Quantum dot-sensitized solar cells—perspective and recent developments A review of Cd chalcogenide quantum dots as sensitizers
نویسندگان
چکیده
The emergence of quantum dot-sensitized solar cells (QDSSCs) has provided an alternative way to harvest sunlight for energy conversion. Among all the QDSSCs, cadmium chalcogenide (CdX, X1⁄4S, Se or Te) based QDSSCs have gained a significant interest due to their easy fabrication, low cost and high performance. However, their performance still does not match with that of their dye-sensitized solar cells (DSSCs) counterpart. In this review, the concept and mechanism behind the QDSSCs are reviewed. Fabrication methods and possible approaches for improving the Cd chalcogenide QDSSC performance are also discussed. It is worthwhile to note that the efficiency of a QDSSC depends on the fabrication method of the quantum dots, morphology of the photoanode, type of electrolyte used and the choice of the counter electrode. It is therefore, imperative for engineering of materials and optimization of the fabrication method for the improvement of QDSSCs performance. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملحساس سازی همزمان سلولهای خورشیدی نقاط کوانتومی متشکل ازفوتوآند نانوبلوری TiO2 با نانوذرات CdS و PbS و بررسی تأثیر نقاط کوانتومی PbS بر عملکرد سلول خورشیدی
In this research, CdS and PbS quantum dots were applied as the light sensitizers in TiO2 based nanostructured solar cells. The PbS quantum dots could absorb a wide range of the sunlight spectrum on earth due to their low bandgap energy. As a result, the cell sensitization is more effective by application of both CdS and PbS quantum dots sensitizers. The TiO2 nanocrystals were synthesized throug...
متن کاملQuantum Dot Sensitized Solar Cells
In response to rapidly increasing global energy demand, the development of alternative energy sources to fossil fuels has emerged as one of the most urgent technological challenges. Solar energy, which represents a nearly unlimited source of clean power, has been considered as one of the most promising new energy sources. In addition to the current success of silicon based solar cells, quantum ...
متن کاملRestricted charge recombination process in PbS quantum dot sensitized solar cells by different coating cycles of ZnS films
The relatively low power conversion efficiency (PCE) of quantum dot sensitized solar cells (QDSSCs) is attributed to charge recombination at the interfaces. Charge recombination process could be suppressed by coating the QD layer with a wide band gap semiconductor such as ZnS, which acts as a blocking layer between the QDs and hole transport material (HTM). In present study, to improve PCE of P...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کامل